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Abstract: We propose a new global and fully inclusive variable ŝ
1/2
min for determining the

mass scale of new particles in events with missing energy at hadron colliders. We define ŝ
1/2
min

as the minimum center-of-mass parton level energy consistent with the measured values of

the total calorimeter energy E and the total visible momentum ~P . We prove that for an

arbitrary event, ŝ
1/2
min is simply given by the formula ŝ

1/2
min =

√

E2 − P 2
z +
√

6E2
T + M2

inv, where

Minv is the total mass of all invisible particles produced in the event. We use tt̄ production

and several supersymmetry examples to argue that the peak in the ŝ
1/2
min distribution is

correlated with the mass threshold of the parent particles originally produced in the event.

This conjecture allows an estimate of the heavy superpartner mass scale (as a function

of the LSP mass) in a completely general and model-independent way, and without the

need for any exclusive event reconstruction. In our SUSY examples of several multijet plus

missing energy signals, the accuracy of the mass measurement based on ŝ
1/2
min is typically

at the percent level, and never worse than 10%. After including the effects of initial state

radiation and multiple parton interactions, the precision gets worse, but for heavy SUSY

mass spectra remains ∼ 10%.
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1 Introduction

The ongoing Run II of the Fermilab Tevatron and the imminent run of the Large Hadron

Collider (LHC) at CERN are on the hunt for new physics beyond the Standard Model

(BSM) at the TeV scale. Arguably the most compelling phenomenological evidence for

BSM particles and interactions at the TeV scale is provided by the dark matter problem [1],

whose solution requires new particles and interactions BSM. A typical particle dark matter

candidate does not interact in the detector and can only manifest itself as missing energy.

At hadron colliders, where the total center of mass energy in each event is unknown,

the missing energy is inferred from the imbalance of the total transverse momentum of

the detected visible particles, and is commonly referred to as “missing transverse energy”

(MET). The dark matter problem therefore greatly motivates the study of MET signatures

at the Tevatron and the LHC [2].

While the MET class of BSM signatures is probably the best motivated one from a

theoretical point of view, it is also among the most challenging from an experimental point

of view. On the one hand, to get a good MET measurement, one needs to have all detector

components working properly, since the mismeasurement of any one single type of objects

would introduce fake MET. In addition, there are complications from cosmics, pile-up,

beam halo, noise, etc. Therefore, establishing a MET signal due to some new physics is a

highly non-trivial task [2, 3].

At the same time, interpreting a missing energy signal of new physics is quite chal-

lenging as well. The main stumbling block is the fact that we are missing some of the

kinematical information from each event, namely the energies and momenta of the missing

invisible particles. What is worse, a priori we cannot be certain about the exact number of
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Figure 1. The generic event topology under consideration in this paper. Black (red) lines cor-

respond to SM (BSM) particles. The solid lines denote SM particles Xi, i = 1, 2, . . . , nvis, which

are visible in the detector, e.g. jets, electrons, muons and photons. The SM particles may origi-

nate either from initial state radiation (ISR), or from the hard scattering and subsequent cascade

decays (indicated with the green-shaded ellipse). The dashed lines denote neutral stable particles

χi, i = 1, 2, . . . , ninv, which are invisible in the detector. In general, the set of invisible particles

consists of some number nχ of BSM particles (indicated with the red dashed lines), as well as some

number nν = ninv − nχ of SM neutrinos (denoted with the black dashed lines). The identities

and the masses mi of the BSM invisible particles χi, (i = 1, 2, . . . , nχ) do not necessarily have to

be all the same, i.e. we allow for the simultaneous production of several different species of dark

matter particles. The global event variables describing the visible particles are: the total energy

E, the transverse components Px and Py and the longitudinal component Pz of the total visible

momentum ~P . The only experimentally available information regarding the invisible particles is

the missing transverse momentum 6~PT .

missing particles in the event, or their identity, e.g. are they SM neutrinos, new BSM dark

matter particles, or some combination of both? These difficulties are illustrated in figure 1,

where we show the generic topology of the missing energy events that we are considering

in this paper. As can be seen from the figure, we are imagining a completely general setup

— each event will contain a certain number nvis of Standard Model (SM) particles Xi,

i = 1, 2, . . . , nvis, which are visible in the detector, i.e. their energies and momenta are

in principle measured. Examples of such visible SM particles are the basic reconstructed

objects, e.g. jets, photons, electrons and muons. The visible particles Xi are denoted in

– 2 –
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figure 1 with solid black lines and may originate either from initial state radiation (ISR), or

from the hard scattering and subsequent cascade decays (indicated with the green-shaded

ellipse). On the other hand, the missing energy 6ET (or more appropriately, the missing

transverse momentum 6~PT ) will arise from a certain number ninv of stable neutral particles

χi, i = 1, 2, . . . , ninv, which are invisible in the detector. In general, the set of invisible

particles in any event will consist of a certain number nχ of BSM particles (indicated with

the red dashed lines), as well as a certain number nν = ninv − nχ of SM neutrinos (de-

noted with the black dashed lines). The missing energy measurement alone does not tell us

the number ninv of missing particles, nor how many of them are neutrinos and how many

are BSM (dark matter) particles. Notice that in this general setup the identities and the

masses mi of the BSM invisible particles χi, (i = 1, 2, . . . , nχ) do not necessarily have to

be all the same, i.e. we allow for the simultaneous production of several different species of

dark matter particles [4–7]. On the other hand, we shall always take the neutrino masses

to be zero

mi = 0, for i = nχ + 1, nχ + 2, . . . , ninv . (1.1)

Most previous studies of MET signatures have assumed a particular BSM scenario and

investigated its consequences in a rather model-dependent setup. The results from those

studies would seem to indicate that in order to make any progress towards determining

what kind of new physics is being discovered, and in particular towards mass and spin

measurements, one must attempt at least some partial reconstruction of the events, by as-

suming a particular production mechanism, and then identifying the decay products from a

suitable decay chain [8–56]. In doing so, one inevitably encounters a combinatorial problem

whose severity depends on the new physics model and the type of discovery signature. For

example, complex event topologies with a large number nvis of visible particles, and/or a

large number of jets but few or no leptons, will be rather difficult to decipher, especially in

the early data. Therefore, it is fair to ask whether one can say something about the newly

discovered physics and in particular about its mass scale, using only inclusive and global1

event variables, before attempting any event reconstruction.

In this paper, therefore, we shall concentrate on the most general topology exhibited

in figure 1 and we shall make no further assumptions about the underlying event structure.

For example, we shall not specify anything about the production mechanism. In particular,

we shall not make the usual assumption that the BSM particles are pair produced and,

consequently, that there are two and only two BSM decay chains resulting in nχ = 2

identical dark matter particles with equal masses m1 = m2. Accordingly, we shall not

make any attempt to group the observed SM objects Xi, i = 1, 2, . . . , nvis, into subsets

corresponding to individual decay chains. Furthermore, we shall in principle allow for the

presence of SM neutrinos which could contribute towards the measured MET. In this sense

our approach will be completely general and model-independent.

1Here and throughout the paper, we use the term “global” from an experimentalist’s point of view.

Strictly speaking, the detectors are not fully hermetic, hence no variable can be truly global in the theorist’s

sense.

– 3 –
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Given this very general setup, our first goal will be to define a global event variable

which is sensitive to the mass scale of the particles that were originally produced in the

event of figure 1, or more generally, to the typical energy scale of the event. Since we are not

attempting any event reconstruction, this variable should be defined only in terms of the

global event variables describing the visible particles Xi, namely, the total energy E in the

event, the transverse components Px and Py and the longitudinal component Pz of the total

visible momentum ~P in the event. In the same spirit, the only experimentally available

information regarding the invisible particles that we are allowed to use is the missing

transverse momentum 6~PT (see figure 1). Of course, the missing transverse momentum 6~PT

is related to the transverse components Px and Py of the total visible momentum ~P as

6~PT = − (Px~ex + Py~ey) = −~PT , (1.2)

so that we can use 6~PT and ~PT ≡ Px~ex + Py~ey interchangingly. Then, the commonly used

missing energy 6ET is nothing but the magnitude 6PT of the measured missing momentum 6~PT :

6ET ≡ 6PT = PT =
√

P 2
x + P 2

y . (1.3)

The main idea of this paper is to propose a new global and inclusive variable ŝmin

defined as follows. ŝmin is simply the minimum value of the parton-level Mandelstam

variable ŝ which is consistent with the observed set of E, Pz and 6PT in a given event.2

Correspondingly, its square root ŝ
1/2
min is the minimum parton level center-of-mass energy,

which is required in order to explain the observed values of E, Pz and 6ET . Our main result,

derived below in section 2, is the relation expressing the so defined ŝ
1/2
min in terms of the

measured global and inclusive quantities E, Pz and 6ET . In section 2 we shall prove that

ŝ
1/2
min is always given by the formula

ŝ
1/2
min(Minv) ≡

√

E2 − P 2
z +

√

6E2
T + M2

inv , (1.4)

where the mass parameter Minv is nothing but the total mass of all invisible particles in

the event:

Minv ≡
ninv
∑

i=1

mi =

nχ
∑

i=1

mi , (1.5)

and the second equality follows from the assumption of vanishing neutrino masses (1.1).

As can be seen from its defining equation (1.4), the variable ŝ
1/2
min is actually a function

of the unknown mass parameter Minv. This is the price that we will have to pay for the

model-independence of our setup. This situation is very similar to the case of the Cambridge

MT2 variable [9, 14, 34–37, 45, 52, 53] and its various cousins [33, 38, 39, 41, 42, 46, 48,

50, 54, 55], which are also defined in terms of the unknown test mass of a missing BSM

particle. However, the Cambridge MT2 variable is a much more model-dependent quantity,

since it requires the identification of two separate decay chains in the events. Furthermore,

in some special cases (more precisely, those of M
(n,n,n−1)
T2 in the language of [54]) MT2 is

2In what follows, instead of 6PT we choose to use the more ubiquitous 6ET , since the two are essentially

the same, see (1.3).
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essentially a purely transverse quantity, and in this sense would not make full use of all of

the available information in the event. In contrast, our variable ŝ
1/2
min is defined in a fully

inclusive manner, and uses the longitudinal event information as well.

After deriving our main result (1.4) in section 2, we devote the rest of the paper to

studies of its properties. For example, in section 3 we shall compare ŝ
1/2
min to some other

global and inclusive variables which have been considered as measures of the mass scale of

the new particles: HT [12], the total visible invariant mass M [2], the missing transverse

energy 6ET , the total energy E, and the total transverse energy ET in the event. We shall use

several examples from SM tt̄ production, as well as supersymmetry (SUSY), to demonstrate

that among all those possibilities, the variable ŝ
1/2
min is the one which is best correlated with

the mass scale of the produced particles, even when we conservatively set the unknown

mass parameter Minv to zero. In section 4 we shall investigate the dependence of the ŝ
1/2
min

variable on the a priori unknown mass parameter Minv, using conventional SUSY pair-

production for illustration. We shall find a very interesting result: when the parameter

Minv happens to be equal to its true value, the peak in the ŝ
1/2
min distribution is surprisingly

close to the SUSY mass threshold. This correlation persists even when the two SUSY

particles produced in the hard scattering are very different, for example, in associated

gluino-LSP production. This observation opens up the possibility of a new, all inclusive

and completely model-independent measurement of the mass scale of the new (parent)

particles produced in the event: we simply read off the location of the peak in the ŝ
1/2
min

distribution, and interpret it as the mass threshold of the parent particles. Because of the

intrinsic dependence on the unknown mass parameter Minv, the method only provides a

relation between the mass of the parent particle and the mass of the dark matter particle,

just like the method of the Cambridge MT2 variable [9]. However, unlike the MT2 endpoint

measurements, our measurement is based on an all-inclusive global variable, and does not

require any event reconstruction at all. It is worth noting that since we are correlating a

physics parameter to the peak, rather than the endpoint of an observed distribution, our

measurement will be less prone to errors due to finite statistics, detector resolution, finite

width effects etc., which represents another important advantage of the ŝ
1/2
min variable. The

accuracy of our new mass measurement method is investigated quantitatively in sections 5

and 6. Our discussion in sections 3, 4 and 5, while demonstrating the usefullness of the ŝ
1/2
min

variable, will be limited to an ideal case, where the effects from initial state radiation (ISR),

multiple parton interactions (MPI) and pile-up are negligible. In section 6 we investigate

the adverse effect of those latter factors on the ŝ
1/2
min measurement in a realistic experimental

environment and discuss different approaches for minimizing their impact. In section 7 we

summarize our main points and conclude.

2 Derivation of ŝ
1/2

min

In this section we shall derive the general formula (1.4) advertised in the Introduction.

Before we begin, let us introduce some notation. We shall denote the three-momenta of

the invisible particles χi, i = 1, 2, . . . , ninv, with ~pi, or in components pix, piy and piz. As

usual, we choose the z-axis along the beam direction, so that pix and piy are the components

– 5 –
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of the transverse momentum ~piT . As already mentioned in the Introduction, the masses of

the invisible particles will be denoted by mi.

Our starting point will be the expression for the parton-level Mandelstam variable ŝ

for the event depicted in figure 1:

ŝ =

(

E +

ninv
∑

i=1

√

m2
i + ~p 2

i

)2

−
(

~P +

ninv
∑

i=1

~pi

)2

=

(

E +

ninv
∑

i=1

√

m2
i + ~p 2

iT + p2
iz

)2

−
(

~PT +

ninv
∑

i=1

~piT

)2

−
(

Pz +

ninv
∑

i=1

piz

)2

. (2.1)

The invisible particle momenta ~pi are not measured and are therefore unknown. However,

they are subject to the missing energy constraint:

ninv
∑

i=1

~piT = 6~PT = −~PT , (2.2)

which causes the second term in (2.1) to vanish and we arrive at a simpler version of (2.1)

ŝ =

(

E +

ninv
∑

i=1

√

m2
i + ~p 2

iT + p2
iz

)2

−
(

Pz +

ninv
∑

i=1

piz

)2

. (2.3)

We see that the expression for ŝ is a function of a total of 3ninv variables ~pi which are

subject to the 2 constraints (2.2). Given that we are missing so much information about

the missing momenta ~pi, it is clear that there is no hope of determining ŝ exactly from

experiment, and the best one can do is to use some kind of an approximation for it. For

example, ref. [52] recently proposed to approximate the real values of the missing momenta

~pi with the values that determine the event MT2 variable. However, constructing any MT2

variable requires one to make certain model-dependent assumptions about the underlying

topology of the event, and furthermore, for very complex events, with large nvis, the

associated combinatorial problem will become quite severe. Therefore, here we shall use a

different, more model-independent approach. The key is to realize that the function ŝ has

an absolute global minimum ŝmin, when considered as a function of the unknown variables

~pi. Therefore, we choose to approximate the real values of the missing momenta with the

values corresponding to the global minimum ŝmin. The minimization of the function (2.3)

with respect to the variables ~pi, subject to the constraint (2.2), is rather straightforward.

The global minimum is obtained for

~piT =
mi

Minv
6~PT , (2.4)

piz =
miPz

√

E2 − P 2
z

√

1 +
6P 2

T

M2
inv

, (2.5)

where the parameter

Minv ≡
ninv
∑

i=1

mi =

nχ
∑

i=1

mi (2.6)

– 6 –
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was already defined in (1.5) and represents the total mass of all invisible particles in the

event. Since the neutrinos are massless, Minv only counts the masses of the BSM invis-

ible particles which are present in the event. Substituting (2.4) and (2.5) into (2.3) and

simplifying, we get the minimum value ŝmin of the function (2.3) to be

ŝmin(Minv) =

(

√

E2 − P 2
z +

√

6P 2
T + M2

inv

)2

. (2.7)

Since the right-hand side is a complete square, it is convenient to take the square root of

both sides and consider instead

ŝ
1/2
min(Minv) =

√

E2 − P 2
z +

√

6P 2
T + M2

inv , (2.8)

which can be equivalently rewritten in terms of the missing energy 6ET as

ŝ
1/2
min(Minv) =

√

E2 − P 2
z +

√

6E2
T + M2

inv , (2.9)

completing the proof of (1.4).

A few comments regarding the variable ŝ
1/2
min defined in (2.9) are in order. Perhaps the

most striking feature of ŝ
1/2
min is its simplicity: the result (2.9) holds for completely general

types of events, with any number and/or types of missing particles. Clearly, ŝ
1/2
min itself is

both a global and an inclusive variable, since it is defined in terms of the global and inclusive

event quantities E, Pz and 6ET , which do not require any explicit event reconstruction. It is

easy to see that the expression (2.9) is invariant under longitudinal boosts, since it depends

on the quantities E2−P 2
z , 6ET and Minv, all three of which are invariant under such boosts.

Also notice that ŝ
1/2
min has units of energy and thus provides some measure of the energy

scale in the event, and can be directly compared to other popular energy-scale variables

(see section 3 below). In the remainder of this paper we shall investigate in more detail

the properties of the new variable (2.9).

3 Comparison between ŝ
1/2

min
and other global inclusive variables

The immediate question after the discovery of a MET signal of new physics at the Tevatron

or LHC, will be: “What is the energy scale of the new physics?”. We shall now argue that

our global inclusive variable ŝ
1/2
min from (2.9) provides a first, relatively quick answer to this

question, which will turn out to be surprisingly accurate, given that we are not attempting

any event reconstruction or modelling of the new physics. Of course, one might do better

by considering exclusive signatures and applying the usual tricks for mass measurements,

but chances are that this will require some time. It is therefore worth investigating how

much information one can get from totally inclusive measurements like (2.9) which should

be available from very early on.

To set up the subsequent discussion, let us introduce the different global variables from

figure 1 which will be experimentally accessible. The total visible energy E is simply

E =
∑

α

Eα , (3.1)

– 7 –
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where we use the index α to label the calorimeter towers, and Eα is the energy deposit

in the α tower.3 As usual, since muons do not deposit significantly in the calorimeters,

the measured Eα should first be corrected for the energy of any muons which might be

present in the event and happen to pass through the corresponding tower α. The three

components of the total visible momentum ~P are

Px =
∑

α

Eα sin θα cos ϕα , (3.2)

Py =
∑

α

Eα sin θα sin ϕα , (3.3)

Pz =
∑

α

Eα cos θα , (3.4)

where θα and ϕα are correspondingly the azimuthal and polar angular coordinates of the

α calorimeter tower. The total transverse energy ET is

ET ≡
∑

α

Eα sin θα , (3.5)

while the missing transverse energy 6ET was already defined in (1.3).

We are now in a position to introduce the variable HT which is commonly used through-

out the literature, yet, quite surprisingly, there is no universally accepted definition for it.

The idea behind HT is to add up the transverse energies of various objects in the event,

including the missing energy (1.3). While the idea is rather straightforward, there are

large variations when it comes to its implementation. For example, one issue is whether

one should use only reconstructed objects or simply sum over all calorimeter towers as we

have been doing here so far. The former method has the advantage that it would tend to

reduce pollution from the underlying event, noise, etc. On the other hand, it would intro-

duce dependence on the jet reconstruction algorithm, the ID cuts, etc. Those subtleties

are avoided in the second method, which defines a purely calorimeter based HT . There

are other possible variations in the definition of HT , for example, whether one includes all

jets, or just the top 4 in pT [12], whether or not one includes the leptons in the sum, etc.

For the purposes of this paper, we do not need to go into such details, and we shall simply

use a calorimeter-based, all inclusive HT definition as

HT ≡ ET + 6ET . (3.6)

Finally, we shall also consider the total visible mass in the event [2]

M ≡
√

E2 − P 2
x − P 2

y − P 2
z =

√

E2− 6P 2
T − P 2

z . (3.7)

Note that in terms of the visible mass M just introduced, our ŝ
1/2
min variable (2.9) can be

alternatively written in a more symmetric form as

ŝ
1/2
min(Minv) =

√

6E2
T + M2 +

√

6E2
T + M2

inv . (3.8)

3We ignore the difference in the segmentation of the hadronic and electromagnetic calorimeters, and for

Eα simply add up the HCAL and ECAL energy deposits.

– 8 –
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Figure 2. Unit-normalized distributions of the various energy scale variables Ei introduced in

section 3: E (blue), 6ET (cyan), ET (magenta), HT (green), M (red) and ŝ
1/2

min
(0) (black); in (a)

single-lepton and (b) dilepton tt̄ events. The dotted (yellow-shaded) histograms are identical in

panels (a) and (b) and show the true ŝ1/2 distribution.

We are now ready to contrast the so defined global inclusive variables E, 6ET , ET ,

HT and M to our variable ŝ
1/2
min defined in (2.9). Since ŝ

1/2
min(Minv) depends on the a priori

unknown invisible mass parameter Minv, first we need to decide what to do about the Minv

dependence in (2.9). In the remainder of this section, we shall adopt a most conservative

approach: we will simply set Minv = 0 and consider the variable

ŝ
1/2
min(0) =

√

E2 − P 2
z + 6ET . (3.9)

This choice is indeed very conservative: for SM processes, where the missing energy is due

to neutrinos, this would be the proper variable to use anyway. On the other hand, for

BSM processes with massive invisible particles, at this point we are lacking the necessary

information to make a more informed choice. We shall postpone our quantitative discussion

of the Minv dependence in (2.9) until the next section 4.

We shall illustrate our comparisons with specific examples, illustrated in figures 2, 3

and 4. In each case, we shall plot the six different global inclusive variables Ei introduced

so far, with the following color scheme: in figures 2- 4 we shall plot the calorimeter energy

E (3.1) with blue lines, the missing transverse energy 6ET (1.3) with cyan lines, the total

transverse energy ET (3.5) with magenta lines, the HT variable (3.6) with green lines,

the total visible mass M (3.7) with red lines, and finally, our ŝ
1/2
min(0) variable (3.9) with

solid black lines. All numerical results shown here have been obtained with PYTHIA4 [57]

and the PGS detector simulation package [58]. As our first example, shown in figure 2,

we choose tt̄ production at the LHC (the corresponding data from the Tevatron already

exists, so the same comparison can also be made directly with CDF and D0 data as well).

In figure 2(a) (figure 2(b)) we show our results for the semi-leptonic (dilepton) channel.

4For simplicity, for the numerical results shown in this and the next two sections, we turned off ISR and

MPI in PYTHIA, which allows us to better illustrate and subsequently explain the salient features of ŝ
1/2

min
.

The ISR and MPI effects will be studied later in section 6.
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The dilepton tt̄ sample is rather similar to a hypothetical new physics signal due to dark

matter particle production: each event has a certain amount of missing energy, which is

due to two invisible particles escaping the detector.

In each panel of figure 2, the dotted (yellow-shaded) histogram shows the true ŝ1/2

distribution, which is the one we would ideally want to measure. However, due to the

missing neutrinos, ŝ1/2 is not directly observable, unless we make some further assumptions

and attempt some kinematical event reconstruction. Therefore we concentrate on the

remaining distributions shown in figure 2, which are immediately and directly observable.

In particular, we shall pose the question, which among the various distributions exhibited

in figure 2 seems to be the best approximation to the true ŝ1/2 distribution. A quick glance

at figure 2 reveals that the variable which comes closest to the true ŝ1/2 is precisely our

variable ŝ
1/2
min(0) defined in (3.9). As for the rest, we see that the missing transverse energy

6ET is a very poor estimator of the energy scale of the events, while ET , HT and M are doing

a little bit better, yet are still quite far off. As can be expected from its definition (3.6),

HT is always somewhat larger than ET , while HT and M are rather similar, with HT (M)

doing better for the dilepton (semi-leptonic) case. Finally, the total energy E is relatively

close to the true ŝ1/2 distribution, but is quite broad in both figures 2(a) and 2(b). In

contrast, the ŝ
1/2
min(0) distribution is quite sharp, and is thus a better indicator of the

relevant energy scale.

Let us now take a closer look at the two ŝ1/2 distributions in each panel of figure 2.

Since ŝ
1/2
min was defined through a minimization procedure, it is clear that it will always un-

derestimate the true ŝ1/2. Figure 2 quantifies the amount of this underestimation for the

case of tt̄ events. We see that ŝ
1/2
min(0) is tracking the true ŝ1/2 quite well for the case of semi-

leptonic tt̄ events in figure 2(a). This could have been expected on very general grounds:

for semi-leptonic events, we are missing a single neutrino, whose transverse momentum is

actually measured through 6~PT , so that the only mistake we are making in approximating

ŝ1/2 ≈ ŝ
1/2
min(0) is due to the unknown longitudinal component p1z. In the case of dilep-

ton events, however, there are two missing neutrinos, and thus more unknown degrees of

freedom which we have to fix rather ad hoc according to our prescription (2.4), (2.5). The

resulting error is larger and leads to a larger displacement between the true ŝ1/2 distribution

and its ŝ
1/2
min(0) approximation, as can be seen in figure 2(b).

In the case of tt̄ illustrated in figure 2 the missing energy arises from massless SM neu-

trinos, so that the approximation Minv = 0 is well justified. Let us now consider a situation

where the observed missing energy signal is due to massive neutral stable particles, as op-

posed to SM neutrinos. The prototypical example of this sort is low energy supersymmetry

with conserved R-parity, and this is what we shall use for our next two examples as well.

Each SUSY event will be initiated by the pair-production of two superpartners, which will

then cascade decay to the lightest supersymmetric particle (LSP), which we shall assume

to be the lightest neutralino χ̃0
1. Since there are two SUSY cascades per event, there will

be two LSP particles in the final state, so that

ninv = nχ = 2 . (3.10)
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Figure 3. The same as figure 2, but for gluino pair production events with (a) 2-jet gluino

decays as in (3.14) and (b) 4-jet gluino decays as in (3.15). The SUSY masses are fixed as follows:

mχ̃0

1

= 100GeV, mχ̃0

2

= 200GeV and mg̃ = 600GeV. In addition to the variables shown in figure 2,

here we also plot the ŝ
1/2

min
(2mχ) distribution (dotted line) with the correct value of the invisible

mass Minv = 2mχ = 2mχ̃0

1

.

Furthermore, since the two LSPs are identical, we also have

m1 = m2 ≡ mχ , (3.11)

i.e. in what follows we shall denote the true LSP mass with mχ. From (1.5), (3.10)

and (3.11) it follows that the true total invisible mass in any SUSY event is simply

Minv = 2mχ . (3.12)

However, the true LSP mass mχ is a priori unknown, therefore, when we construct

our variable

ŝ
1/2
min(Minv) = ŝ

1/2
min(2mχ) (3.13)

for the SUSY examples, we will have to make a guess for the value of the LSP mass mχ.

We shall denote this trial value by m̃χ, in order to distinguish it from the true LSP mass

mχ. This situation is reminiscent of the case of the Cambridge MT2 variable [9], where in

order to construct the MT2 variable itself, one must first choose a test value for the LSP

mass. Our notation here is consistent with the notation for MT2 used in [54].

We are now ready to describe our SUSY examples. For our study we will choose a

rather difficult signature — jets plus 6ET , for which all other proposed methods for mass

determination are bound to face significant challenges. For concreteness, we consider gluino

production, followed by a gluino decay to jets and a neutralino. In figure 3 we consider

gluino pair-production (g̃g̃), while in figure 4 we show results for associated gluino-LSP

production (g̃χ̃0
1). In addition, we consider two different possibilities for the gluino decays.

The first case, shown in figures 3(a) and figures 4(a), has the gluino decaying directly to

the LSP:

g̃ → jjχ̃0
1 , (3.14)
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Figure 4. The same as figure 3, but for events of associated gluino-LSP production.

so that the gluino pair-production events in figure 3(a) have 4 jets and missing energy,

while the associated gluino-LSP production events in figure 4(a) have two jets and missing

energy. In the second case, presented in figures 3(b) and figures 4(b), we forced the gluino

to always decay to χ̃0
2, which in turn decays via a 3-body decay to 2 jets and the LSP:

g̃ → jjχ̃0
2 → jjjjχ̃0

1 . (3.15)

As a result, the gluino pair-production events in figure 3(b) will exhibit 8 jets and missing

energy, while the associated gluino-LSP production events in figure 4(b) will have four jets

and missing energy. Of course, the actual number of reconstructed jets in such events may

be even higher, due to the effects of initial state radiation (ISR) and/or jet fragmentation.

In any case, such multijet events will be very challenging for any exclusive reconstruction

method, therefore it is interesting to see what we can learn about them from the global

inclusive variables discussed here.

For concreteness, in what follows we shall always fix the relevant SUSY masses accord-

ing to the approximate gaugino unification relation

mg̃ = 3mχ̃0

2

= 6mχ̃0

1

≡ 6mχ , (3.16)

and since we assume three-body decays in (3.14) and (3.15), we do not need to specify the

SUSY scalar mass parameters, which can be taken to be very large. In addition, as implied

by (3.16), we imagine that the lightest two neutralinos are gaugino-like, so that we do not

have to specify the higgsino mass parameter either, and it can be taken to be very large

as well.

Figure 3 shows our results for the different global inclusive variables introduced earlier,

for the case of gluino pair-production. All in all, the outcome is not too different from what

we found previously in figure 2 for the tt̄ case: when it comes to approximating the true

ŝ1/2 distribution, the missing energy 6ET does the worst, our variable ŝ
1/2
min(0) does the best,

and all other remaining variables are somewhere in between those two extremes. This time,

in figure 3 we also plot one “cheater” distribution, namely ŝ
1/2
min(2mχ), where we have used
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the correct value of the invisible mass Minv = 2mχ = 2mχ̃0

1

. It demonstrates that knowing

the actual value of the LSP mass helps (since ŝ
1/2
min(2mχ) gets closer to the truth), but is

not crucial: the quantity ŝ
1/2
min(0) still does surprisingly well in approximating the true ŝ1/2.

Notice that when the missing energy in the data is due to massive BSM particles,

there are two sources of error in approximating ŝ1/2 ≈ ŝ
1/2
min(0), each leading to an un-

derestimation. By comparing the three different types of ŝ1/2 distributions shown in each

panel of figure 3, one can see quantitatively the effect of each source. First, when we take

the minimum possible value of ŝ1/2 in (2.3), we are underestimating by a certain amount,

which can be seen by comparing the “cheater” distribution ŝ
1/2
min(2mχ) (dotted line) to the

ŝ1/2 truth (yellow shaded). Second, as we do not know a priori the LSP mass, we take

conservatively Minv = 0, which leads to a further underestimation, as evidenced by the dif-

ference between the ŝ
1/2
min(0) distribution (solid line) and its “cheater” version ŝ

1/2
min(2mχ).

In spite of those two undesirable effects, the ŝ
1/2
min(0) approximation that we end up with is

still surprisingly close to the real one, and is certainly the best approximation among the

variables we are considering.

The common thread in our first two examples shown in figures 2 and 3 was that

the events were symmetric, i.e. we produce the same type of particles, which then decay

identically on each side of the event. As our last example, we shall consider an extreme

version of an asymmetric event, namely one where all visible particles come from the same

side of the event, i.e. from a single decay chain. The process of associated gluino-LSP

production is exactly of this type - all jets arise from the decay chain of a single gluino,

which is recoiling against an LSP. The topology of these events is very different from the

events considered earlier in figures 2 and 3. Nevertheless, as seen in figure 4, we find very

similar results. In particular, among all the different global inclusive variables that we are

considering, the quantity ŝ
1/2
min(0) is still the one closest to the true ŝ1/2 distribution.

4 Dependence of ŝ
1/2

min
on the unknown masses of invisible particles

In the previous section 3 we demonstrated the advantage of ŝ
1/2
min in comparison to the other

commonly used global inclusive event variables. From now on we shall therefore focus our

discussion entirely on ŝ
1/2
min and its properties. In this section we shall investigate in more

detail the dependence of ŝ
1/2
min on the (a priori unknown) masses of the invisible particles

which are causing the observed missing energy signal. Then in the next section 5 we shall

use these results to correlate the observed ŝ
1/2
min distribution to the masses of the parent

particles which were originally produced in the event.

Recall that in the three examples from the previous section, we always conservatively

chose the invisible mass to be zero: Minv = 0 and we correspondingly considered ŝ
1/2
min(0).

This choice is actually a good starting point in studying any missing energy signature by

means of ŝ
1/2
min(Minv). The assumption of Minv = 0 is precisely what one would do if one

were to assume that the missing energy is simply due to SM neutrinos, as opposed to some

new physics. However, if the observed missing energy signal is in excess of the expected

SM backgrounds, then an alternative, BSM explanation for those events must be sought.
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Figure 5. Unit-normalized distributions of the ŝ
1/2

min
(Minv) variable for several different SUSY mass

spectra: (a) mχ̃0

1

= 100GeV, (b) mχ̃0

1

= 200GeV, (c) mχ̃0

1

= 300GeV, and (d) mχ̃0

1

= 400GeV.

The remaining masses are fixed according to (3.16). We consider gluino pair-production events with

2-jet gluino decays as in (3.14). In each panel, we plot the ŝ
1/2

min
(Minv) = ŝ

1/2

min
(2m̃χ) distributions

for several representative values of the trial LSP mass m̃χ as shown. The color scheme is such that

the black histogram is always the case where we happen to use the correct value of the LSP mass:

m̃χ = mχ. The dotted (yellow-shaded) histogram gives the true ŝ1/2 distribution.

In that case, we would not know the mass of the invisible particles, and we would have to

make a guess. Our main goal in this section is to study numerically the effect of this guess.

Our philosophy will be to revisit the SUSY examples from section 3 and simply vary the

test mass m̃χ of the invisible particles (the LSPs). Since the two LSPs are identical (see

eq. (3.11)), we will take their test masses to be the same as well.

Our results are presented in figures 5, 6 and 7. In figures 5 and 6 we consider gluino

pair production. In figure 5 each gluino decays to 2 jets as in (3.14), while in figure 6

each gluino decays to 4 jets as in (3.15). Then in figure 7 we consider asymmetric events

of associated gluino-LSP production, where the single gluino decays to 4 jets as in (3.15).

In each figure, we consider four different study points, defined through the value of the

true LSP mass mχ. In all three figures 5–7, panels (a) correspond to mχ = 100 GeV,
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panels (b) have mχ = 200 GeV, panels (c) have mχ = 300 GeV, while in panels (d) mχ =

400 GeV. As before, the remaining masses mg̃ and mχ̃0

2

are always fixed according to the

approximate gaugino unification relation (3.16). Each panel in figures 5–7 exhibits the true

ŝ1/2 distribution (yellow-shaded histogram), and the corresponding ŝ
1/2
min(2m̃χ) distributions

for several representative values of the test LSP mass m̃χ. Each ŝ
1/2
min curve is both color

coded and labelled by its corresponding value of m̃χ. Our color scheme is such that the

ŝ
1/2
min histogram in black is the one where we happen to use the correct value of the LSP

mass, i.e. when m̃χ = mχ.

The qualitative behavior seen in figures 5–7 is more or less as expected: the ŝ
1/2
min(2m̃χ)

distributions shift to higher energy scales, as we increase the value of the test mass m̃χ.

This can be easily understood from the definition (2.9) of the ŝ
1/2
min(Minv) variable: for any

given set of E, Pz and 6ET values, ŝ
1/2
min(Minv) is a monotonically increasing function of Minv.

The shifts observed in figures 5–7 also make perfect physical sense: obviously, one needs

more energy in order to produce heavier invisible particles.

Let us now concentrate on the quantitative aspects of figures 5–7. Upon careful inspec-

tion of the three figures, we notice that when the test mass m̃χ is equal to the true mass
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Figure 7. The same as figure 6, but for events of associated gluino-LSP production (g̃χ̃0
1).

mχ (i.e. for the black colored histograms), the corresponding distribution ŝ
1/2
min(2mχ) peaks

very close to the true ŝ1/2 threshold
(

ŝ1/2
)

thr
. As usual, we define the threshold

(

ŝ1/2
)

thr

as the value where the true ŝ1/2 distribution (yellow shaded histogram) sharply turns on.

This observation is potentially extremely important, since the threshold
(

ŝ1/2
)

thr
is simply

related to the masses of the two particles which were originally produced in the event. For

example, for the gluino pair production events in figures 5 and 6 the threshold is given by

(

ŝ1/2
)

thr
= 2mg̃ = 12mχ , (4.1)

where the second equality is valid only under the gaugino unification assumption (3.16).

Similarly, in the case of associated gluino-LSP production in figure 7, the threshold is

given by
(

ŝ1/2
)

thr
= mg̃ + mχ̃0

1

= 7mχ , (4.2)

where once again the second equality is due to our assumption (3.16). It is easy to verify

that in all three figures 5, 6 and 7, the ŝ1/2 thresholds (i.e. the sharp turn-ons in the

yellow-shaded distributions) always occur at the locations predicted in eqs. (4.1) and (4.2).
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Let us now introduce one last piece of notation. In what follows we shall use

the notation
(

ŝ
1/2
min(Minv)

)

peak
(4.3)

to denote the particular value of ŝ
1/2
min where we find the peak of the distributions

dN(ŝ
1/2
min(Minv))

dŝ
1/2
min

(4.4)

which are plotted in figures 5–7. In other words,

[

d

dŝ
1/2
min

dN(ŝ
1/2
min(Minv))

dŝ
1/2
min

]

ŝ
1/2

min
=

“

ŝ
1/2

min
(Minv)

”

peak

= 0. (4.5)

With those conventions, we can now formulate our empirical observation above as
(

ŝ1/2
)

thr
≈
(

ŝ
1/2
min(2mχ)

)

peak
. (4.6)

The last equation is one of the main results in this paper. While we were not able to

derive it in a strict mathematical sense, it is nevertheless supported by our numerical

results shown in figures 5–7. We also checked many other SUSY examples, where we used

different mass spectra and different production processes and decays. We found that in all

cases the approximate relation (4.6) still holds. figure 8 quantifies this statement for the

two previously considered processes of gluino pair production and associated gluino-LSP

production, where the gluinos are forced to decay either to 2 jets as in (3.14) or to 4 jets as

in (3.15). In the figure we compare the following three quantities, all of which are related

in one way or another to the energy scale ŝ1/2 of the events:

•
(

ŝ1/2
)

ave
: this is the average of the true ŝ1/2 distribution (the one shown in the

previous figures with the yellow-shaded histogram). Here we had to pick some variable

which would characterize the true ŝ1/2 distribution. Two alternative choices which

we also considered were the peak or the mean of the true ŝ1/2 distribution. All three

of these variables are numerically quite close, with the peak value typically being the

lowest, and the average value being the largest. In the end we chose
(

ŝ1/2
)

ave
for its

computational simplicity. This choice is rather inconsequential for our conclusions

below, since we are introducing the
(

ŝ1/2
)

ave
variable only for illustration purposes

in figure 8. As we shall see,
(

ŝ1/2
)

ave
actually cancels out in the final comparison

between the next two variables.

•
(

ŝ1/2
)

thr
: this is the threshold of the true ŝ1/2 distribution, i.e. the minimum allowed

value of ŝ1/2. Since the minimum ŝ1/2 is obtained when the parent particles are

produced at rest,
(

ŝ1/2
)

thr
is nothing but the sum of the parent particle masses,

as indicated in eqs. (4.1) and (4.2). Therefore,
(

ŝ1/2
)

thr
is precisely the parameter

that we would like to measure, in order to determine the true mass scale of the

parent particles.
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Figure 8. Validity of the approximation (4.6) as a function of the LSP mass mχ. The SUSY mass

spectrum is fixed as in (3.16). In panels (a) and (b) we consider gluino pair production events,

while in panels (c) and (d) we study associated gluino-LSP production. In panels (a) and (c) we

force the gluino to decay to 2 jets as in (3.14), while in panels (b) and (d) each gluino decays to 4

jets as in (3.15). In each panel we compare the following three quantities:
(

ŝ1/2
)

ave
, which is the

average of the true ŝ1/2 distribution;
(

ŝ1/2
)

thr
, which is the threshold of the true ŝ1/2 distribution;

and
(

ŝ
1/2

min
(2mχ)

)

peak
, which is the location of the peak of the ŝ

1/2

min
(2mχ) distribution.

•
(

ŝ
1/2
min(2mχ)

)

peak
: this is the parameter defined in eq. (4.5), namely the location of the

peak of the ŝ
1/2
min(2mχ) distribution, where we use the correct value for the invisible

mass, in this case Minv = 2mχ, since each SUSY event has two escaping LSPs.

According to our empirically derived conjecture (4.6), the last two variables are approx-

imately equal, and the purpose of figure 8 is to test this hypothesis, using the previously

considered SUSY examples: gluino pair production (panels (a) and (b)), and associated

gluino-LSP production (panels (c) and (d)). In panels (a) and (c) we force the gluino to

decay to 2 jets as in (3.14), while in panels (b) and (d) each gluino decays to 4 jets as

in (3.15). Each line in figure 8 gives the fractional difference between a pair of ŝ1/2 quan-
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tities as defined above. For normalisation we used the value of
(

ŝ1/2
)

thr
, which is given

by (4.1) for panels (a) and (b) and by (4.2) for panels (c) and (d). We vary the relevant

part of the SUSY spectrum by changing the input value of the LSP mass mχ and adjusting

the other masses in accord with (3.16).

The main result in figure 8 is the comparison between the experimentally observable

quantity
(

ŝ
1/2
min(2mχ)

)

peak
and the theoretical parameter

(

ŝ1/2
)

thr
. As indicated by the

red lines in figure 8, for the examples shown, those two quantities differ by no more than

10%, thus validating our conjecture (4.6) at the 10% level as well. We find this result

quite intriguing. After all, we have not attempted any event reconstruction or decay chain

identification, we are looking at very complex and challenging multijet signatures, and

we have even included detector resolution effects. After all those detrimental factors, the

possibility of making any kind of statement regarding the mass scale of the new physics at

the level of 10% should be considered as rather impressive.

We find it instructive to understand how we ended up with the observed precision, by

comparing these two quantities
(

ŝ
1/2
min(2mχ)

)

peak
and

(

ŝ1/2
)

thr
to the true ŝ1/2 as repre-

sented by its average
(

ŝ1/2
)

ave
. The blue lines in figure 8 show the fractional difference

between
(

ŝ1/2
)

ave
and

(

ŝ1/2
)

thr
. We see that this difference varies by quite a lot, on the

order of 10-30% for gluino pair-production, but may get in excess of 150% for associated

gluino-LSP production. As expected,
(

ŝ1/2
)

ave
is always larger than the threshold value

(

ŝ1/2
)

thr
, since the parent particles are typically produced with some boost, and the blue

lines in figure 8 simply quantify the effect of this boost.

On the other hand, the green lines in figure 8 represent the fractional difference (again

normalised to
(

ŝ1/2
)

thr
) between the measurable quantity

(

ŝ
1/2
min(2mχ)

)

peak
introduced ear-

lier in eq. (4.5), and the true energy scale of the events as given by
(

ŝ1/2
)

ave
. We see that

this time the fractional difference is negative, which simply reflects the fact that our vari-

able ŝ
1/2
min, being defined through a minimization condition, will always underestimate the

true energy scale. The interesting fact is that while the blue and green curves in figure 8

have opposite signs, in absolute value they are very similar, leading to a fortuitous cancel-

lation. The resulting discrepancy indicated by the red lines is therefore much smaller than

either of the two individual errors indicated by the blue and green lines.

It is now easy to understand qualitatively the origin of the approximate relation (4.6).

Due to the boost at production, the true energy scale ŝ1/2 is larger than the threshold

energy
(

ŝ1/2
)

thr
by a certain amount. Later on, when we approximate ŝ1/2 with ŝ

1/2
min, we

underestimate the true energy scale ŝ1/2 by more or less the same amount, bringing us

back near the threshold
(

ŝ1/2
)

thr
. As a result, the ŝ

1/2
min distribution peaks very near the

mass threshold
(

ŝ1/2
)

thr
which we are trying to measure in the first place. Of course,

the proximity of the ŝ
1/2
min peak to the threshold

(

ŝ1/2
)

thr
will be process dependent, but

according to the examples considered here, holds to a remarkable accuracy.

5 Correlation of the ŝ
1/2

min
peak with the heavy particle mass threshold

In the absence of a rigorous mathematical derivation, eq. (4.6) should be considered simply

as a conjecture. Nevertheless, once eq. (4.6) is assumed to be approximately true, it allows
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us to measure the mass scale of the parent particles in terms of the hypothesized test mass

m̃χ of the lightest invisible particle, e.g. the LSP in SUSY. For example, in the case of

gluino pair-production in SUSY, we can use eqs. (4.1) and (4.6) to obtain a measurement

of the gluino mass

m̃g̃(m̃χ) ≈ 1

2

(

ŝ
1/2
min(2m̃χ)

)

peak
(5.1)

as a function of the trial LSP mass m̃χ. Similarly, we can measure the gluino mass even

in the much more challenging case of associated gluino-LSP production: from eqs. (4.2)

and (4.6), we obtain

m̃g̃(m̃χ) ≈
(

ŝ
1/2
min(2m̃χ)

)

peak
− m̃χ . (5.2)

As evidenced from eqs. (5.1) and (5.2), these measurements are very straightforward, since

the only experimental input needed for them is the location of the peak of our all-inclusive

global variable ŝ
1/2
min. One should not be bothered by the fact that we did not get an

absolute measurement of the gluino mass, but only obtain it as a function of the LSP

mass. This is a well-known drawback of the other common mass measurement methods as

well. For example, the classic MT2 endpoint analysis only yields the heavier parent mass

as a function of the lighter child mass [9]. Similarly, the measurement of a single endpoint

in some observable invariant mass distribution provides only a single functional relation

between the masses of the intermediate particles in the decay chain, and by itself does not

measure the absolute scale. In this sense, our measurement (5.1) is on equal footing with

the more traditional methods.

However, it is worth emphasizing the advantage of our method in the case of asymmet-

ric events, where the parent particles are very different. An extreme version of such events

is provided by the associated gluino-LSP production considered earlier. Under those cir-

cumstances, the standard MT2 method does not apply, while the single decay chain in the

event may prove to be too short or too messy to provide a clean measurement through the

invariant mass endpoint method. In contrast, we can still utilize ŝ
1/2
min for the measurement

indicated in (5.2) and a corresponding gluino mass determination.

Let us now see how well the proposed measurements (5.1) and (5.2) will do for each

of the SUSY examples considered in the previous section. In figure 9(a) we used eq. (5.1)

to convert our previous measurements of the various ŝ
1/2
min(2m̃χ) peaks in figures 5 and 6

into a corresponding gluino mass measurement. The red (blue) dashed lines correspond to

the case of 4-jet (2-jet) gluino decays as in (3.15) ((3.14)). We show results for the same

four study points used in the four panels of figures 5 and 6, and the open circles mark the

locations of the true masses (mχ,mg̃), for each study point.

The quality of the measurement (5.1) can be judged from the proximity of the ex-

perimentally derived m̃g̃(m̃χ) curves shown in the figure to the exact location of the true

masses (mχ,mg̃). We see that both the red and blue curves in figure 9(a) pass very close to

the true answer, especially for the study points with lower mχ. In fact, we obtain a better

measurement from the more complex 8-jet events (the red curves). At first sight, this may

seem counterintuitive, until one realizes that the more visible objects are present in the

event, the smaller the effect of the missing particles, and hence the smaller the error due to
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Figure 9. The correlation between the test LSP mass m̃χ and the corresponding gluino mass

m̃g̃, derived from (a) our proposed measurement (5.1) in gluino pair-production events, or (b)

our proposed measurement (5.2) in associated gluino-LSP production events. Red (blue) lines

correspond to the case of gluino decays to 4 jets as in (3.15) (gluino decays to 2 jets as in (3.14)).

The black dotted lines in panel (a) indicate the theoretically derived correlation from an ideal MT2

endpoint analysis, i.e. assuming perfect resolution of the jet combinatorial ambiguity and ignoring

any detector smearing. The open circles mark the locations of the true masses (mχ, mg̃), for each

of our four study points.

our approximation (2.4), (2.5). Such multijet events appear very challenging to be tackled

by any other means. For the sake of comparison, the black dotted lines in figure 9(a) show

the theoretically derived correlation from an ideal MT2 endpoint analysis, i.e. assuming

perfect resolution of the jet combinatorial ambiguity and ignoring any detector resolution

effects. Comparing the red line from our measurement (5.1) to the ideal MT2 line, we

are tempted to conclude that, in essence, our ŝ
1/2
min variable contains pretty much the same

amount of information as MT2. The big advantage of ŝ
1/2
min, however, is the fact that we

can obtain this information at a much lower cost in terms of analysis effort.

Finally, in figure 9(b) we show our results from the analogous measurement (5.2) in

the case of associated gluino-LSP production. Here we also consider two different options

for the gluino decay — 2 jet decays as in (3.14) (blue lines), or 4 jet decays as in (3.15) (red

lines). We then plot the resulting functional dependence m̃g̃(m̃χ) for each of the four study

points considered earlier. Comparing figure 9(b) to figure 9(a) which we just discussed,

we arrive at very similar conclusions: the measurement (5.2) is still quite accurate, and

the superior result is provided by the more complex topology. Notice that here we do not

show any MT2-based results, since the concept of MT2 can not be applied to an extremely

asymmetric topology like this one.

6 The impact of initial state radiation and multiple parton interactions

Up to now we have been discussing the
√

ŝ variable of the primary parton-level hard

scattering (HS). In principle,
√

ŝ can be measured exactly, whenever we could both detect

and identify the decay products of the heavy particles which were initially produced in the
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HS. Unfortunately, in reality it is rather difficult to measure
√

ŝ directly, for a couple of

reasons:

1. Omitting relevant particles from the
√

ŝ calculation. This case arises whenever some

of the decay products resulting from the HS are not detected. For example, this

may happen due to the imperfect hermeticity of the detector, where some of the

relevant decay products are lost down the beam pipe. Fortunately, in reality this

effect is pretty small. A much more serious problem arises whenever there are invisible

particles χi (see figure 1) among the relevant decay products. Then, a relatively large

fraction of the initial
√

ŝ may go undetected, as can be seen by comparing the
√

ŝmin

distributions in figures 3–7 to the respective true (yellow-shaded)
√

ŝ distributions.

2. Including irrelevant particles in the
√

ŝ calculation. In general, any given event will

contain a certain number of particles which will be seen in the detector, but did

not originate from the primary HS. Initial state radiation (ISR), multiple parton

interactions (MPI) and pile-up are the main examples of processes contributing to

this effect. The pile-up effect can be controlled by a suitable ∆z cut, removing

from consideration tracks which do not appear to originate from the primary vertex.

However, ISR and MPI can be a serious problem. Including the extra particles will

necessarily lead to an increase in the measured value of
√

ŝ. In order to emphasize

this difference, in the rest of this section we shall be using a prime to designate the

experimentally measured quantities which include the full ISR and MPI effects (
√

ŝ′

and
√

ŝ′min, correspondingly).

Our proposal for dealing with the first of these two problems was to introduce the
√

ŝmin

variable in lieu of the true
√

ŝ. We then found an interesting empirical correlation (4.6)

between
√

ŝmin(2mχ) and the new physics mass scale. Now we shall turn our attention to

dealing with the second problem, namely the fact that
√

ŝ′min >
√

ŝmin.

Before we begin, we should mention that, depending on the particular circumstances

and/or the goal of the experimenter, there may be certain situations where the inequality√
ŝ′min >

√
ŝmin may not represent an actual problem. For example, if one is simply trying

to measure the total energy in the observed events and not just the energy of the HS,

then for missing energy events the relevant quantity of interest would be
√

ŝ′min itself,

which would still be given by the expression (1.4) derived in section 2. There may also

be situations where the ISR and/or MPI products may be reliably identified and excluded

from the
√

ŝmin calculation. For example, consider a lepton collider and a missing energy

signature with any number of jets and/or leptons. Since MPI is absent, while ISR and

beamstrahlung would only contribute photons, there will be no confusion with regards to

which particles are due to ISR and which are coming from the HS. The analogous example

at hadron colliders would be a signature containing anything but QCD jets. In what

follows we shall ignore such trivial cases and instead focus on the much more challenging

case of hadron colliders and jetty signatures, where the ISR/MPI products cannot be easily

recognized.
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In the absence of any reliable methods for resolving the jet combinatorial problem on an

event by event basis, one is left with two options. First, one may try to compensate for the

ISR/MPI effects on the global
√

ŝ′min distribution. In order to do this, one needs to know

how ISR/MPI would affect the original
√

ŝmin distribution. Ideally, this information should

be measured from real data, using some Standard Model process as a standard candle. For

example, Drell-Yan can provide the relevant information for a qq̄ initial state [59], while tt̄

can be used to study the gg initial state. Alternatively, one may calculate the ISR effects

from first principles in QCD. Both of these approaches will be pursued in a future work [60].

A second approach would be to design and apply cuts which would minimize the ISR

and MPI effects on the calculation of
√

ŝ′min. Unfortunately, this is rather difficult to do

in a model-independent fashion, since the size of the ISR effect is very model-dependent

and depends on many factors: the energy of the collider (Tevatron or LHC), the mass of

the produced particles, the identity of the partons initiating the HS, etc. Therefore, the

optimal method to compensate for the ISR effect will also depend on all of these factors

and will need to be decided on a case by case basis.

For the purposes of the current study, we shall use a simple cut-based approach as

discussed here, postponing the more complete treatment for [60]. To this end, we need to

identify some global property of the ISR and MPI products which would distinguish them

from the HS. Since it is well known that ISR and MPI peak in the forward region, it is

natural to consider the pseudorapidity η as a simple cut variable. The energy distributions

as a function of |η|, for a few representative cases are shown in figure 10. We again consider

the processes of gluino pair production (figures 10(a) and 10(b)) and associated gluino-LSP

production (figures 10(c) and 10(d)). In each case, the gluino decays to 2 jets as in (3.14).

We choose to show the two extreme cases for the mass spectrum considered earlier: mχ =

100 GeV (figures 10(a) and 10(c)) and mχ = 400 GeV (figures 10(b) and 10(d)). The

gluino mass is still fixed according to the gaugino unification relation (3.16). The black

histograms in figure 10 represent our previous results from section 4 without any ISR or

MPI effects, while the green (red) histograms include the effect of ISR (MPI). Finally, the

blue histograms include both the ISR and MPI effects. The plots in figure 10 are normalized

as follows. For each event, say the i-th one, we add the energy deposits in all calorimeter

towers at a given |η|, then divide the sum by the total energy Ei observed in the i-th event

and the total number of events N , and finally enter the result into the corresponding |η|
bin. It is easy to see that this ensures that the final distributions are unit-normalized.

Figure 10 shows that, as expected, the ISR and MPI effects appear mostly in the

forward region. Therefore, by applying a simple |η| < ηmax cut, we could reduce their

impact. Of course any such rapidity cut would essentially bring us back closer to the

transverse quantities from which we were trying to escape from the very beginning. Fur-

thermore, such a simple-minded procedure would introduce an uncontrollable systematic

error, which would have to be estimated on a case by case basis. For example, figure 10(b)

shows that when the spectrum is rather heavy, the ISR/MPI effects are relatively small

and can probably be safely neglected altogether, while figures 10(a), 10(c) and 10(d) reveal

a significant ISR/MPI pollution for a light SUSY spectrum. One should also keep in mind

that our conjecture (4.6) is already subject to a certain systematic error, whose size sets
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earlier: 2-jet gluino decays from gluino pair production with (a) mχ = 100GeV or (b) mχ =

400GeV; and from associated gluino-LSP production with (c) mχ = 100GeV or (d) mχ = 400GeV.

The color scheme is such that the black histograms correspond to our previous results from section 4

in the idealised case without ISR or MPI, while the green (red, blue) histograms include the effect

of ISR (MPI, both ISR and MPI). Here Ei is the total energy measured in the i-th event, and N is

the total number of events. As a result, all distributions shown in the figure are unit-normalized.

the benchmark for the ISR/MPI elimination study. With those caveats, we choose our

cut at ηmax = 1.4, which is nothing but the end of the barrel and beginning of HE/HF

calorimeters in CMS. This choice makes good sense from an experimentalist’s point of view,

since the segmentation and performance of the HE/HF calorimeters are relatively worse to

begin with.

Let us now revisit some of the
√

ŝmin distributions from section 4 and incorporate

successively the effects of ISR and/or MPI. Figure 11 shows our results for the same four

SUSY examples from figure 10. The green (red) histograms include the effect of ISR (MPI)

alone, while the blue histograms include both the ISR and MPI effects, and thus represent

the true measured quantity
√

ŝ′min(2mχ). All three of those distributions are subject to
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Figure 11. Unit-normalized distributions of
√

ŝmin(2mχ) and
√

ŝ′min(2mχ) for the SUSY examples

considered in figure 10. The color scheme is the same as in figure 10. The blue histograms include

both the ISR and MPI effects, and represent the actually measured
√

ŝ′min(2mχ), while the green

(red) histograms include the effects of ISR (MPI) only. All three of those distributions are subject

to the |η| < 1.4 cut discussed in the text. For comparison, we also show our previous results from

section 4, corresponding to the HS only (without any ISR or MPI effects) and without an η cut.

In particular, the black solid histograms in figure 11 represent our previous results for the quantity√
ŝmin(2mχ), while the black dotted (yellow-shaded) histograms give the true ŝ1/2 distribution,

whose threshold is the parameter to be measured.

our |η| < 1.4 cut. For comparison, we also show our previous results from section 4,

corresponding to the HS only (without any ISR or MPI effects) and without an η cut. In

particular, the black solid histograms in figure 11 represent our previous results for the

quantity
√

ŝmin(2mχ), while the black dotted (yellow-shaded) histograms give the true ŝ1/2

distribution, whose threshold is the parameter that ideally we would like to measure.

Figure 11 confirms that the ISR and MPI effects shift the original HS distribution√
ŝmin (black histograms) into a harder

√
ŝ′min distribution (blue histograms), even after

applying the η cut. The size of this effect depends on the mass spectrum: it is more

– 25 –



J
H
E
P
0
3
(
2
0
0
9
)
0
8
5

pronounced when the spectrum is light,5 as in figures 11(a), 11(c) and 11(d). In the worst

case scenario of figure 11(c) the location of the s
1/2
min peak shifts by almost a factor of two.

On the other hand, for the best-case scenario of figure 11(b) the shift is rather small. By

comparing the green and red histograms, we can also deduce the relative importance of

ISR versus MPI. We see that the two effects are roughly comparable in size, but as a rule,

the red histograms are shifted further along, which suggests that MPI has a somewhat

higher impact than ISR, indicating the importance of understanding the full structure of

the underlying event at the LHC. The general conclusion from figure 11 is that our mass

measurement method proposed in section 4 is likely to work much better if the new particle

spectrum happens to be relatively heavy. This assumption is not unreasonable: if the new

physics spectrum were too light, then it might have already been ruled out directly or

indirectly, and if not, then due to the higher production cross-sections, there should at

least be sufficient statistics to attempt some sort of exclusive reconstruction. In this sense,

for the case where
√

ŝmin is most likely to be useful, ISR and MPI are least likely to be

a problem.

We are now in a position to repeat our mass measurement analysis from section 5,

with the inclusion of ISR and MPI, while ignoring the forward calorimetry through an

|η| < 1.4 cut. Our results are shown in figure 12. Comparing figures 8 and 12, we see that

the inclusion of ISR/MPI deteriorates the mass measurement, most notably for light SUSY

mass spectra with mχ ∼ 100−200 GeV. This should not be surprising, given what we have

already seen in figures 10 and 11. Nevertheless, for heavier SUSY spectra the precision

remains relatively good, typically on the order of 10%, even for the most challenging cases

of associated gluino-LSP production.

7 Summary and conclusions

Anticipating that an early (late) discovery of a missing energy signal at the LHC (Tevatron)

may involve a signal topology which is too complex for a successful and immediate exclusive

event reconstruction, we proposed a new global and inclusive variable ŝ
1/2
min, defined as

follows: it is the minimum required center-of-mass energy, given the measured values of

the total calorimeter energy E, total visible momentum ~P , and/or missing transverse energy

6ET in the event. Our variable has several desirable features:

• It is global in the sense that it uses all of the available information in the event and

not just transverse quantities, for example.

• It is inclusive in the sense that it does not depend on the specific production process,

or particular decay chain. Consequently, it is also very model-independent and does

not require any exclusive event reconstruction, which may be a great advantage in

the early days of the LHC.

• It is theoretically well defined and as such has a clear physical meaning: it gives

the minimum total energy which is consistent with a given observed event. This

5Notice that for a given value of mχ, the relevant mass scale 2mg̃ = 12mχ in figures 11(a) and 11(b) is

almost twice as large as the corresponding mass scale mg̃ + mχ̃0

1

= 7mχ in figures 11(c) and 11(d).
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Figure 12. The same as figure 8, but including the effects of ISR (green), MPI (red), both ISR

and MPI (blue). The variable ŝ′
1/2

min(2mχ) here is calculated with a cut of |η| < 1.4, corresponding

to the coverage of the CMS barrel calorimeter only.

intuitively clear physical picture allowed us to correlate it with the mass threshold

of the new particles as in eq. (4.6), which turned out to work surprisingly well. In

contrast, it is generally difficult to correlate a bump in a purely transverse quantity

like 6ET or HT to any physical mass parameter in a model-independent fashion.

In section 2 we derived a simple formula (1.4) for ŝ
1/2
min in terms of the measured E,

Pz and 6ET . The formula is in fact completely general, and is valid for any generic event

shown in figure 1, with an arbitrary number and/or types of missing particles. Therefore,

it can be applied equally successfully to SM as well as BSM missing energy signals.

In sections 3 and 4 we identified two useful properties of the ŝ
1/2
min variable. First,

its shape matches the true ŝ1/2 distribution better than any of the other global inclusive

quantities which are commonly discussed in the literature. More importantly, when we

create the ŝ1/2(Minv) distribution with the true value of the invisible mass Minv, its peak

is very close to the mass threshold of the parent particles originally produced in the event.

This conjecture, summarized in eq. (4.6), allows us to obtain a rough estimate of the new
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physics mass scale, as a function of the single parameter Minv. For example, in R-parity

conserving supersymmetry, where Minv = 2mχ, we derive a relation between the heavy

superpartner mass and the mass of the LSP, as shown in figure 9.

Before we conclude, we should comment on several other potential uses of the ŝ
1/2
min

variable. Before we even get to the discovery stage, ŝ
1/2
min(0) can already be used for back-

ground rejection and increasing signal to noise, just like MT2(0) [25]. In particular, it is

interesting to explore the correlations between ŝ
1/2
min and the other global inclusive variables

discussed in section 3 [61]. While we did not include any SM backgrounds in our SUSY

plots, we expect that the presence of SM backgrounds will not affect either the existence

or the location of the new physics ŝ
1/2
min(0) peak. At large values of ŝ

1/2
min(0), where a new

physics signal is most likely to appear, any SM background will be rather smooth and

featureless, so that it can be safely subtracted away through a side-band method.

Another possible application of ŝ
1/2
min(0) is at the trigger level. In section 3 we already

saw that ŝ
1/2
min(0) is superior to both HT and 6ET in identifying the scale of the hard

scattering. At the same time, there exist dedicated HT and 6ET triggers, motivated by

the sensitivity of those variables to the relevant energy scale. Given that our variable is

doing an even better job in this respect, we believe that the implementation of a high-level

ŝ
1/2
min(0) trigger should be given a serious consideration.

As we have been emphasizing throughout, a major advantage of ŝ
1/2
min is that it does

not require any explicit event reconstruction and thus it is very model-independent. We

should mention that to some extent, these properties are also shared by the MTGen variable

proposed in [33]. In calculating MTGen, one considers all possible partitions of the visible

particles Xi in the event, thus effectively eliminating the model-dependence which stems

from assuming a particular topology. While MTGen and ŝ
1/2
min are similar in this respect, we

believe that ŝ
1/2
min has three definite advantages — first, it is much, much easier to construct.

Second, ŝ
1/2
min can be applied to extreme asymmetric topologies where the second side of

the event yields no visible particles. A simple example of this sort was the associated

gluino-LSP production considered in figures 4, 7, 8(c,d), 9(b) and 12(c,d). Finally, the

interpretation of ŝ
1/2
min involves reading off a peak, while MTGen requires reading off an

endpoint. The former is much easier than the latter: for example, a peak would still be

recognizable in the presence of large backgrounds. In contrast, an MTGen endpoint can fade

out due to a number of reasons, including detector resolution, combinatorial background,

etc. On the other hand, MTGen (and more generally, the MT2 class of variables) is better

behaved in the presence of ISR. More specifically, the endpoints of the MTGen and MT2

distributions in general do shift in the presence of ISR, and their explicit dependence on

the “upstream” transverse momentum has to be calculated on a case by case basis [54].

However, the nice feature of both MTGen and MT2 is that when the test mass m̃χ becomes

equal to its true value mχ, there is no such shift and the endpoint remains intact even in

the presence of arbitrary ISR. In contrast, as discussed in section 6, ŝ
1/2
min is always affected

by ISR to some extent, requiring some sort of correction.

In conclusion, we reiterate that perhaps the most important advantage of ŝ
1/2
min is that

it is readily available from day one. We are therefore eagerly looking forward to the first

ŝ
1/2
min plots produced with real LHC data.
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